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Abstract— Humans attribute meaning to actions, and can
recognize, imitate, predict, compose from parts, and analyse
complex actions performed by other humans. We have built a
model of action representation and understanding which takes
as input perceptual data of humans performing manipulatory
actions and finds a semantic interpretation of it. It achieves
this by representing actions as minimal plans based on a
few primitives. The motivation for our approach is to have
a description, that abstracts away the variations in the way
humans perform actions. The model can be used to represent
complex activities on the basis of simple actions. The primitives
of these minimal plans are embodied in the physicality of the
system doing the analysis. The model understands an action
under observation by recognising which plan is occurring.
Using primitives thus rooted in its own physical structure, the
model has a semanticist and causal understanding of what
it observes. Using plans, the model considers actions as well
as complex activities in terms of causality, compositions, and
goal achievement, enabling it to perform complex tasks like
prediction of primitives, separation of interleaved actions and
filtering of perceptual input. We use our model over an action
dataset involving humans using hand tools on objects in a
constrained universe to understand an activity it has not seen
before in terms of actions whose plans it knows of. The model
thus illustrates a novel approach of understanding human
actions by a robot.

I. INTRODUCTION

Humans have an ability to understand meaning in the
actions of other humans by observing them. Not only can
humans learn complex actions, they can do more than mere
imitation of previously observed actions because humans,
unlike most AI systems operate in their semantic space.
They have the ability to reason and predict future actions
of others in real time. To achieve a goal, a human can
construct complex plans of actions by having observed only
parts of them, having never seen the complete sequence of
the right action in the first place. Actions are interesting
because infants are sensorimotor agents, and develop abstract
concepts later. Certain linguists are of the opinion [1] that
even abstract non physical concepts are rooted in physical
primitives.

Humans have a robust mechanism to filter and simplify
observed behaviour of other humans, as well as a mechanism
to compose complex plans out of those observations. We
would like to endow robots with a capability of this kind
so that they can understand human behaviour and coexist
with humans. There are two basic questions one needs to
address in order to achieve this goal. The filtering of sensory

1A. Guha, Y. Yang, and Y. Aloimonos, are from the Department of Com-
puter Science, and 2C. Fermüller is from UMIACS, University of Maryland,
College Park, MD 20742, USA {aguha, yzyang, yiannis} at
cs.umd.edu and fer at umiacs.umd.edu

data, is a necessity in understanding the way humans deal
with complex actions. The amount of information a human
perceives is staggering, and to use it effectively humans
can filter out large parts of its perception. How does a
human decide what to filter out and what to focus on while
observing a complex action in real time, simultaneously
understanding it? It has been argued that infants drastically
filter out information [2] in order to build schemas or plans
with perceptual data. Understanding the representation of
actions is fundamental to have any kind of mechanism of ac-
tion understanding. What kind of information is important in
Action Representation and how is the information structured?
Human activity recognition is an active area of research due
to its many potential applications, and currently a lot of
different approaches are being followed. Most approaches
focus on full body motions and involve observing spatio
temporal positions of entities or humans [3], [4], [5] in
the universe and learning patterns from them. Some involve
trying to model the symbolic representation of sensory data.
There have been suggestions [6] that a minimalist generative
grammar, similar if not the same as the one which exists for
languages, also exists for action understanding, and attempts
to understand the grammar of this action-language with the
grammar primitives as the trajectories [7] or the objects [8]
have been made. However, these grammar models, while
addressing how the filtering might be done, do not provide
much insight into why the filtering is done in that manner.
Also, a Context Free Grammar doesn’t provide a lot of
explanation as to when an action ends since it does not
concern itself much with the causality of the sub-actions.

We suggest a model in which we provide a basis for
a semanticist understanding of actions. Firstly, this model
attempts to represent complex activities composed of plans
of relatively simple action descriptions. Secondly, this model
represents these simple actions humans do with their two
hands in terms of plans making use of just two primitives,
namely ‘MOVE’ and ‘GRASP’. These are what we call
“minimal plans”. While MOVE and GRASP can be resolved
to finer ontologies, this level of abstraction provides a
good balance between robustness and adequate information
and solves several issues raised above. A plan acts as a
description in addition to being a representation. It imparts
an understanding of causality. Actions, by their very nature,
are goal oriented. There is evidence of action planning in the
human brain. Infants have been shown to have the faculty to
identify and recreate actions in a hierarchy [9]. We suggest
that the grammar of human actions is more than a grammar,
and must fundamentally involve planning with a hierarchy of
plans arising out of some kind of minimalist plans. Minimal



plans also explain ‘compositionality’, or the ability to under-
stand larger activities based on smaller learned actions, an
ability which infants have been observed to have [9]. Most
importantly, using minimal plans explains the filtering out of
a lot of perceptual data because the goal of a small plan helps
the human to focus on particular sub-actions, by observing
the changes in the universe due to the visible consequences
of earlier actions. This explains the phenomena of ‘attention’.
This kind of minimal action representation can be used to
segment and parse videos robustly due to the very small
number of primitives involved. Important also, it gives us a
natural way of segmenting the motion sequence in time: a
new action starts whenever an object comes in contact with
a hand (i.e. the object is grasped)

Our model gives a justification of the two primitives used
on a semantic basis which has meaning in terms of the robot.
Thus, we attempt to move away from the conventionally
functionalist approaches towards semantic mechanisms. A
shortcoming most of existing approaches have is that while
attempting to understand “meaning” of complex actions, they
keep a functionalist framework in which the robot doesn’t
have any understanding of meaning in the symbols it uses.
Thus our approach attempts to provide a robot with a very
basic form of “intentionality”

II. RELATED WORK

The area of human activity recognition and understand-
ing is one attracting a lot of interest. Generally it can
be divided into two types, the visual recognition methods,
which comprise of recognition techniques, and the non-visual
description methods, which are traditionally functionalist
approaches forming representations of actions. A few good
surveys of the former can be found in [10], [11], and [12].
There is a lot of motivation for these kind of models as
the possibilities of application are immense, especially in
areas like HCI, recognition and retrieval, biometrics, in the
video domain, and various kinds of image segmentations
and classifications. The general method used by most of the
visual recognition methods is to learn from a lot of spatio-
temporal points what an action looks like and a few works of
interest can be found in [3], [4], [5], and [13].Till now most
of the focus is in recognizing singular human actions like
walking, jumping, running or gait etc. like the work done
in [14] and [15]. More complex actions require the usage
of HMMs [16] or other parametric approaches for learning
the representation as done in works like [17], [18], and [19].
This is the primary thrust of research in computer vision for
such recognition techniques.

However, to properly reason about complex actions, se-
mantics are required, and if independent semantics cannot be
achieved, at least meaningful syntax is required . Some meth-
ods use the concept of regenerative minimalist grammars
in analogy with languages. In these methods to relate the
objects to actions, HMMs are used in [20] and [21]. Closely
related to our work is the work in [22] where an attempt is
made to understand complex actions compositionally using
a minimalist grammar tree using object detection. This work

on action trees based on objects is further developed in [23].
They address the question of actions being compositionally
interleaved as well as make an attempt to have action
prediction. They use an action grammar structure which is
powerful enough to analyse complex action and also resolve
interleaved actions. However, the grammar oriented method
of most of these works do not address the theme of any
independent semantic understanding of actions. That is their
systems do not have any actual understanding of the complex
actions in terms of what is meaningful to the robot instead
of the programmer, or a non-arbitrary theory of where the
bootstrapping should be. While our approach to what we
think is rudimentary semantic capability may not be a correct
analogue of any biological agent, we think that a semanticist
justification is necessary for an action understanding model
and we attempt to provide one in this paper.

III. DESCRIPTION

In this section we will describe the entire process of
understanding actions using minimalist plans by first describ-
ing our methodology in collecting data in sub-section III-
A, then the concept of minimalist plans and the primitives
used in them in sub-section III-B. In subsequent sub-sections
III-C, III-D, and III-E we describe how action recognition
is done by recognizing which plan is occurring on the
basis of primitives and the action alterations. Lastly, in sub-
section III-F we talk about automated planning and how it
complements this approach.

A. UMD Minimalist action dataset

In order to build our action primitives we require the
robot to observe a series of hand-actions performed by
a human actor using several different kinds of tools. In
addition, we have compiled a new dataset, consisting of
6 actions: A={SLICE, JOIN, MASH, TRANSFER, POUR,
STIR} performed by 2 different human actors using 6
common tools: T ={knife, ladle, pitcher, ladle, mug, bowl}
and 4 other objects1: O={tomato, cucumber, bread, cheese}.
For the purpose of an accurate tracking of both hands, at
the beginning of the clip, a calibration phase is included. In
total, there are 10 video clips, which serves as a testbed for
the analysis of minimalist action plans.

B. Minimal Plans

To begin with, as mentioned before in the introduction, our
model is based on minimal plans. All plans have primitive
actions, i.e, actions that cannot be subdivided into anything
simpler on some consistent basis, on which the plan gets
based. What is the justification for an action to be primitive
from the terms of the robot even if those are bootstrapped?
We would like that the basis of selecting primitive actions
has to be both consistent and non-arbitrary. To address non-
arbitrariness first let us ask a question, how does a human get
rudimentary knowledge of an action and its consequences
on objects? A human does that by imitation [24], that is,

1For the rest of the paper, unless specified, the term “object” will be used
to indicate both tools and objects. This does gets sorted in the planning stage



it observes as an infant [25] what other humans are doing
to same objects under altered conditions and tries to mirror
their limb movements to what may be an internal motor [26]
. Thus, the most elementary actions seem to be based on the
smallest limb movements an actor can produce. We posit
that herein lies the basis of rooted meaning. To elaborate we
think that ultimately the meaning of an action lies in what it
means to the agent’s body in terms of the smallest and most
fundamental of its physical characteristics. After all the ways
in which an agent can modify the universe with its own limbs
should be a major part of any comprehension of its universe.
Firstly, we only consider actions that can be accomplished
by the two hands of a human. As our data shows, we are
dealing with a finite domain of actions. Secondly, we abstract
all “fine motoric actions” by the fingers due to the limitations
of our perceptual apparatus to robustly view those actions.
If we allow for these two assumptions, we reach a curious
conclusion that to describe all simple actions that can be
done by the two hands of a human, we need only two action
primitives, namely, that of the action MOVE and the action
GRASP where these actions are defined as
• MOVE: Transport the object under observation from

one location to the other. The environment or object(s)
may or may not alter due to MOVE.

• GRASP: To use the hand, or a suitable robotic analogue,
to hold the object under consideration. The opposite of
GRASP is UNGRASP. GRASP may or may not alter
the environment or objects

Using these two action primitives in our dataset we eval-
uate six human activities, namely SLICE, JOIN, MASH,
TRANSFER, POUR, and STIR. Since these plan scripts
have overlapping structures, a condensed unified script is
given in Fig. 1. We are considering GRASP and UNGRASP

Fig. 1. The six actions of our dataset, SLICE, JOIN, MASH, TRANSFER,
POUR, and STIR

as a tuple in the same primitive. Here we clarify a few
points. Firstly, we know of course that both MOVE and
GRASP have large variety in themselves. [27] considers
there are 33 kinds of GRASPs divided hierarchically into

13 groups (and thus corresponding ways to UNGRASP) a
human can perform. Similarly, as we will demonstrate later,
there are various kinds of MOVE, and currently we are
able to detect three kinds of them. Having said that, the
basic commonality between all MOVEs and all GRASPs
persuades us to use these two as the primitives. Secondly,
one may envision other primitives (aside from fine motoric
actions which we will not consider), like ‘Reach’ wherein
one reaches towards an object, ‘Engage’ in which an object is
brought to interact with another object etc. and we hold that
all these primitives are essentially cases of MOVE. A plan
requires a consistent definition of the world, and a finite set
of precondition and postconditions in addition to primitive
actions. In our minimalist plans, objects are provided with
several properties, like “Graspability”, “Slicability”, “Being
a Tool”, “Being a Container” etc. Preconditions consist of
a combination of existence of objects, their presence in
specific locations, and their properties. Postconditions consist
of all of these three but can also have what we call “Action
Alterations”, namely perceivable consequences or changes in
the properties of the objects or the environment due to the
primitive actions. Each of the six actions mentioned before
has an expanded script. In all of these minimal plans there
are essentially two scripts occurring simultaneously, one for
each of the hands of the human. These are Partial Order Plans
in which at times the order in which both the hands do these
tasks may be indeterminate. An important point to be stressed
is that to infer which plan the robot is observing, it does
not need to know all the parameters of the plan to compare
it to the scripts it has in its memory. Actually, as we will
demonstrate in the next section, if there are a finite number
of scripts in consideration, then a few parameters of the plan
will be enough to infer which action is being performed.
This is a very useful property because one a script of a plan
is known, it allows the inference of affordances. Thus, once
we know that we are operating in the SLICE plan space,
the object the plan is operating upon is a “Slicable” object
and the object doing the slicing is a “Slicing Tool”. Thus
these minimal plans allow an easy way to engage in semantic
reasoning. In our simplified action universe we are dealing
with only six actions but these actions can be composed into
more complex actions. Since these are plans, all our model
needs to do is maintain correct causality. Aside from these
actions we have worked with, potentially a lot more can be
analysed in terms of just our two primitives. After obtaining
the scripts of the plans it becomes very easy to determine in
an automated manner which script the agent is operating in.
However, to learn the new scripts from just observation of
human actions with no such bootstrapping in a completely
automated manner is beyond the scope of our current work.

C. Plan Detection

As mentioned before, an action is recognized by detecting
which plan the agent is currently operating in. For example,
the previous Fig. 1 demonstrates that if one hand does only
a GRASP followed by an UNGRASP, then it has to be one
of the five actions which are not JOIN, as JOIN requires



a movement in both hands. However, if there is a GRASP
followed by a MOVE followed by an UNGRASP in both
hands, then it cannot be a SLICE or MASH. If one adds
in the information of the movements in addition to that
of grasping, it is possible to whittle down the possibilities
further. Add in the information of locations of objects
varying with time and the search space decreases even more.
Lastly, if there is still confusion about which action is being
done, we have the powerful tool of Action Alteration which
determines what consequence the action has done on the
environment and/or the object. Knowing all these effectively
recognizes the action. As soon as the action is recognised
the complete plan is confirmed which in turn allows us to
predict affordances, or properties, of the objects involved.
To detect the primitive GRASP, we take recourse in the
inherent property of moving and grasping, namely that before
a GRASP the hand will be in motion while the object will
be stationary, and after the UNGRASP it will be the same.
However, in the former case the hand will move towards the
object whereas in the latter case the hand will move away
from the object. Also, a GRASP and the UNGRASP may
have none, one, or more MOVEs between them. A property
of a hand moving an object is that while in motion both
the hand and the object will have relatively similar velocity
in magnitude and direction. This will suddenly change as
soon as the movement stops and UNGRASP happens. Thus,
by making a graph of the relative distances of hands and
the objects from each other, and another graph with the
relative velocities of the hands and the objects, it is possible
to parse out instances of GRASPs, MOVEs, and UNGRASPs
by looking for changes in the relative velocities. The method
is illustrated in the Fig. 2.

Fig. 2. Parsing out the action primitives using relative velocity

However, a GRASP and an UNGRASP may have more
than one sort of MOVE between them. In our minimalist
plans we differentiate moves when they undergo a sharp
change in property, like a relatively rectilinear motion chang-
ing into a periodic up and down motion will count as two
MOVEs. We see examples of this happening in four of our
actions. To detect these sudden change in movement prop-
erties, we plot a highly smoothed graph of the coordinates
of the centre of observation of the two objects in the three

dimensions which can be parsed to see if the linear motion
changes for example to a circular one as shown in Fig. 3 . At
this stage in recognition the system has information about the
action primitives. But to correctly recognize the action it may
need some additional information regarding the consequence
of the action. For that there is our procedure of monitoring
alterations in objects after actions are performed.

Fig. 3. Using object location to get different MOVEs

D. Hand Tracking and Grasp Type Recognition

We pre-process the dataset using the FORTH hand tracker
available2 [28] which tracks the 3D position, orientation and
full articulation of a human hand from markerless visual
observations with Kinect input. Currently, we are trying
to find if a finer classification of “GRASP” primitive can
be obtained using the full articulation and orientation of
both hands. While we maintain “GRASP” as semantically
atomic, it is useful for future work where we can consider
more elaborate means of recognizing which minimal plan
we are in. We collect 10 different grasp types following
[27] as training data, and extract longitudinal and oblique
arches of each finger as features. We further reduce the
dimensionality by PCA and then apply k-means clustering
to discover the underlying four general types of hand status,
1)REST, 2)FIRM GRASP, 3)DELICATE GRASP (PINCH)
and 4)EXTENSION GRASP. (See Fig. 4). To every trail, a
naive-bayes classification is used to classify grasp types for
each frame.

E. Object Monitoring and Alterations

An object monitoring process is needed to deduce the
action primitives. We use the joint segmentation and tracking
method presented in [29]. This method combines stochastic
tracking [30] with a fixation based active segmentation [31].
The tracking module provides a number of tracked points.
The locations of these points are used to define an area
of interest and a fixation point for the segmentation, and
the color in their immediate surroundings are used in the
data term of the segmentation module. The segmentation
module segments the object, and based on the segmentation,

2http://cvrlcode.ics.forth.gr/handtracking/



Fig. 4. Four types of grasp and their territories on low dimensional space.

updates the appearance model for the tracker. Fig 5 illustrates
the method over time, which is a dynamically closed-loop
process. Another crucial pre-condition and post-condition of

Fig. 5. Flow chart of the proposed active segmentation and tracking method
for object monitoring.

human actions is action alterations, aka, the consequence
of every action. In the context of our work where we
are concerned with how actions change the universe it is
necessary to ascertain how they alter the objects they operate
on. From their very nature, action alterations can be defined
into six primitive categories, 1)DIVIDE, 2)ASSEMBLE,
3)TRANSFER, 4)DEFORM, 5)CREATE and 6)CONSUME.
For further details please refer to [29].

Thus knowing the positions of the objects and the hands,
parsing the MOVEs and GRASPs from their relative veloci-
ties, evaluating what kind of MOVE occurs by the location,
and evaluating the action consequence, the complete plan is
built and the action recognized.

F. Integration with Automated Planning
Representing actions as minimal plans has another very

important advantage, namely that they can be seamlessly
integrated with an automated planner. An automated planner
can generate a sequence of minimal plan representations for
an unknown activity, which can be used to either verify or
predict the observed sequence. To a potential robotic plat-
form, using both minimal and complex plans in a hierarchy
makes it possible for it to incrementally reason about actions.
We converted our primitives in the constrained world to a
suitable PDDL 3 representation, and we investigated planning

3http://ipc.informatik.uni-freiburg.de/PddlResources

techniques to find a planning algorithm suited to generate
sequences of these representations. It should be mentioned
here that planning is a PSPACE-complete problem even for
simple problems and there is no universal efficient solution
for all methods.

The first algorithm which we investigated is FF [32] plan-
ning. Its base system architecture uses Enforced Hill Climb-
ing, a forward search engine, [32] as the search algorithm
which uses a certain heuristic called relaxed GRAPHPLAN
on every state. Enforced Hill Climbing uses a forward search-
ing technique to search through the state space. At every
state relaxed GRAPHPLAN estimates the distance from the
goal heuristically, and also computes the promising successor
states. In addition to this, FF has techniques to avoid wasting
time getting to goals needed later which happens where
goal orderings are present. This creates problems in using
FF in our particular problem. The reason being the action
sequences observed had a significant number of primitive
actions with indeterminate orders where FF simply fails
instead of trying out random combinations of such orders.
Thus, while FF is fast where indeterminate orders do not
exist it tends to fail gracelessly in the planning problem
we are facing. This problem will remain in all state space
planners.

The second class of algorithms we investigated were
partial order causal link (POCL) planners which search in
partial plan space. Partial Order refers to the fact that the plan
generated may have primitive actions in indeterminate order.
A POCL planner searches for the solution in partial plan
space, i.e. it makes a set of partial plans, each with flaws,
and then tries to select these partial plans while resolving
the flaws. This continues till either a plan without flaws
is discovered, in which case it is a success or the partial
plan space is exhausted in which case it is a failure. Thus,
the problem of ordering or indeterminate primitives never
arises. The planner among these best suited to our needs is
VHPOP [33] which works where FF fails. VHPOP uses
the A∗ algorithm to search through plan space and also uses
multiple flaw selection strategies concurrently which gives it
much more accurate and faster performance than comparative
planners. Also, VHPOP has capability for durative planning,
something we may incorporate in future work when we
incorporate temporal elements into the plans. Tying in our
minimalist plans with an automated planner is important for
any future application on a robot platform as it gives the
robot the option of verification or prediction in addition
to directly planning its own actions. The entire semantic
framework of the robot operates with knowledge of causality
and we approach the ideal of “intentionality”.

IV. EVALUATION

As mentioned earlier, our dataset has 10 videos of the
six actions which our system is able to recognize. To
make certain this recognition is robust, we evaluate it by
deliberately inducing artificial noise in the input parses and
noting for a particular level of incorrect inputs what will
be the accuracy in recognizing the action. By doing this we



are able to derive theoretical bounds of accuracy in plan
recognition. Also, having built our system which recognises
actions by identifying which minimalist plan is occurring we
evaluate the robustness of our system by making it observe
an activity whose script it does not know of previously, and
letting it reason about it in terms of the scripts it knows of.

A. Observing Unknown Activity

Our system observes a complex human activity which is
essentially, making a sandwich from a few components like
a loaf of bread, a block of cheese and a tomato. This task,
aside from being unknown, also has the added complexity
of a large amount of objects being simultaneously moved
around in the environment making it confusing for the
system. The system does not have the sequence of minimal
plans representing this entire activity. On observing this
activity our system manages to interpret it as a series of
interleaved actions of SLICEs and JOINs as it correctly
identifies the order of MOVEs and GRASPs and is able to
associate them with the consequences for the two actions
which are correctly observed. In Fig. 6 the part of the
sandwich making process which is one of the JOIN actions
is being correctly identified. The two GRASPs and the two
MOVEs along with the consequence ASSEMBLE lead to the
correct conclusion that this part of the activity is a JOIN.
Interestingly, despite the profusion of objects, due to correct
tracking of the hand and the relative velocities with objects, it
does not make mistakes with deducing the order of activities
in making of a sandwich. Also, the entire sequence of actions
observed matches nicely with the automated planner’s output
as expected. The only weak part observed in this experiment
was difficulty in tracking the knife in the repeated SLICE
actions because of its reflective surface but since we were
doing velocity comparisons and since the GRASPs on the
knife had been accurately found the knife movements were
nevertheless correctly identified.

Fig. 7. Accuracy scores for random corruption.

B. Inducing Artificial Noise

In the real world no object detection and segmentation
methodology can claim complete accuracy. Occlusion by
hand sometimes leads to incorrect segmentation of the ob-
jects. Thus our model needs to be robust over imperfect
perception. We tested this by first randomly inducing errors

in detecting the velocities leading to errors in the detection of
the primitives MOVE and GRASP and then we computed the
percentages of incorrect plan identification. We did this by
finding which plan is the closest to the one being observed.
Here, closest is defined as the plan with the least “edit
distance” from the six known minimal plans where one edit
has the same weight for consequence, primitive and location.
We then counted the number of plans correctly identified for
each level of error. Then we did the same thing by inducing
errors in the location measurement thus making what kind of
MOVE we are observing as inaccurate randomly. Thirdly, we
induced errors in all of the perceptual inputs simultaneously,
the primitives, the locations as well as the consequences,
and computed the closest possible plans being identified,
and counted how many plans were correctly recognized for
what level of induced error. The results of this are in the
Fig. 7. Till 40% of all the three categories of errors the
accuracy of detecting the correct plan lies in the 80-90%
range. The graph shows high resilience even when subjected
to >60% induced errors in all categories. In the worst
case scenarios, inaccuracies in the location doesn’t change
much of the results because most of the plan is determined
by the primitives. Actual performance is much better than
these figures because we chose the errors out of uniform
error distribution. In reality some aspects of perception, like
the consequences and velocity measurement, are generally
quite robust so the errors are not evenly distributed. Even
with such unfavourable conditions the minimalist planning
method exhibits the robustness needed to deal with noise.

V. CONCLUSIONS AND FUTURE WORK

Representing actions by minimalist plans seems to be a
useful, versatile, and robust method to do action understand-
ing. Our future work would involve refining the definition
of the primitives MOVE and GRASP giving them their own
ontologies. This will be done keeping in mind that the ro-
bustness of this system depends on the very small amount of
primitives. The perceptual apparatus will be made robust to
do feature processing in order to better track the objects and
be able to observe fine motoric actions by finger mapping.
The plans will be used in a feedback loop to develop a
prediction and attention mechanism which uses a plan to
direct its attention to objects which confirm that the plan
is correct thus improving object recognition in the process.
Finally, we will work on a method to automatically learn
plans in a generative manner by observing human actions on
a basis of lesser bootstrapped information. That will allow
faithful emulation by a robotic platform of observed human
activities.
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Fig. 6. Illustration of recognizing one of the JOIN actions while making a sandwich. The first row has the results of the hand tracking and object
segmentation, the second row has a graph depicting distance of object from hands followed by a row of graphs depicting relative velocities of the objects
and hands which detect the GRASPs, UNGRASPs and MOVEs, the last row depicts where the ASSEMBLE alteration is detected.
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vision-based human motion capture and analysis,” Computer vision
and image understanding, vol. 104, no. 2, pp. 90–126, 2006.

[11] P. Turaga, R. Chellappa, V. Subrahmanian, and O. Udrea, “Machine
recognition of human activities: A survey,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 18, no. 11, pp. 1473–
1488, 2008.

[12] D. M. Gavrila, “The visual analysis of human movement: A survey,”
Computer vision and image understanding, vol. 73, no. 1, pp. 82–98,
1999.

[13] G. Willems, T. Tuytelaars, and L. Van Gool, “An efficient dense
and scale-invariant spatio-temporal interest point detector,” ECCV, pp.
650–663, 2008.

[14] J. Ben-Arie, Z. Wang, P. Pandit, and S. Rajaram, “Human activity
recognition using multidimensional indexing,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 24, no. 8, pp. 1091–
1104, 2002.

[15] A. Yilmaz and M. Shah, “Actions sketch: A novel action representa-
tion,” in CVPR, vol. 1, 2005, pp. 984–989.

[16] A. Kale, A. Sundaresan, A. Rajagopalan, N. Cuntoor, A. Roy-
Chowdhury, V. Kruger, and R. Chellappa, “Identification of humans
using gait,” Image Processing, IEEE Transactions on, vol. 13, no. 9,
pp. 1163–1173, 2004.

[17] C. Hu, Q. Yu, Y. Li, and S. Ma, “Extraction of parametric human
model for posture recognition using genetic algorithm,” in Automatic
Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE In-
ternational Conference on. IEEE, 2000, pp. 518–523.

[18] P. Saisan, G. Doretto, Y. Wu, and S. Soatto, “Dynamic texture
recognition,” in CVPR, vol. 2, 2001, pp. II–58.

[19] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal, “Histograms of
oriented optical flow and binet-cauchy kernels on nonlinear dynamical
systems for the recognition of human actions,” in CVPR, 2009, pp.
1932–1939.

[20] S. Hongeng and R. Nevatia, “Large-scale event detection using semi-
hidden markov models,” in Computer Vision, 2003. Proceedings. Ninth
IEEE International Conference on. IEEE, 2003, pp. 1455–1462.

[21] N. Oliver, E. Horvitz, and A. Garg, “Layered representations for
human activity recognition,” in Multimodal Interfaces, 2002. Proceed-
ings. Fourth IEEE International Conference on. IEEE, 2002, pp. 3–8.

[22] K. Pastra and Y. Aloimonos, “The minimalist grammar of action,”
Philosophical Transactions of the Royal Society B: Biological Sci-
ences, vol. 367, no. 1585, pp. 103–117, 2012.

[23] D. Summers-Stay, C. Teo, Y. Yang, C. Fermuller, and Y. Aloimonos,
“Using a minimal action grammar for activity understanding in the
real world,” in Intelligent Robots and Systems, IEEE International
Conference on, 2013.

[24] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in cognitive sciences, vol. 3, no. 6, pp. 233–242, 1999.

[25] M. Bornstein, “A descriptive taxonomy of psychological categories
used by infants,” Origins of cognitive skills, pp. 313–338, 1984.

[26] M. Iacoboni, R. P. Woods, M. Brass, H. Bekkering, J. C. Mazziotta,
and G. Rizzolatti, “Cortical mechanisms of human imitation,” Science,
vol. 286, no. 5449, pp. 2526–2528, 1999.

[27] T. Feix, R. Pawlik, H. Schmiedmayer, J. Romero, and D. Kragic, “A
comprehensive grasp taxonomy,” in Robotics, Science and Systems
Conference: Workshop on Understanding the Human Hand for Ad-
vancing Robotic Manipulation, 2009.

[28] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficient model-based
3d tracking of hand articulations using kinect,” in BMVC 2011, 2011.

[29] Y. Yang, C. Fermuller, and Y. Aloimonos, “Detection of manipulation
action consequences (mac),” in CVPR, 2013.

[30] B. Han, Y. Zhu, D. Comaniciu, and L. Davis, “Visual tracking
by continuous density propagation in sequential bayesian filtering
framework,” PAMI, IEEE Transactions on, vol. 31, no. 5, pp. 919–
930, 2009.

[31] A. Mishra, C. Fermuller, and Y. Aloimonos, “Active segmentation with
fixation,” in IROS, 2009.

[32] J. Hoffmann and B. Nebel, “The ff planning system: Fast plan
generation through heuristic search,” arXiv preprint arXiv:1106.0675,
2011.

[33] H. L. S. Younes and R. G. Simmons, “Vhpop: Versatile heuristic partial
order planner,” J. Artif. Intell. Res. (JAIR), vol. 20, pp. 405–430, 2003.


